Topological Data Analysis

See Full Article at Wikipedia: https://en.wikipedia.org/wiki/Topological_data_analysis

In applied mathematics, topological data analysis (TDA) is an approach to the analysis of datasets using techniques from topology. Extraction of information from datasets that are high-dimensional, incomplete and noisy is generally challenging. TDA provides a general framework to analyze such data in a manner that is insensitive to the particular metric chosen and provides dimensionality reduction and robustness to noise. Beyond this, it inherits functoriality, a fundamental concept of modern mathematics, from its topological nature, which allows it to adapt to new mathematical tools.

The initial motivation is to study the shape of data. TDA has combined algebraic topology and other tools from pure mathematics to allow mathematically rigorous study of “shape”. The main tool is persistent homology, an adaptation of homology to point cloud data. Persistent homology has been applied to many types of data across many fields. Moreover, its mathematical foundation is also of theoretical importance. The unique features of TDA make it a promising bridge between topology and geometry.

See Full Article at Wikipedia: https://en.wikipedia.org/wiki/Topological_data_analysis

Advertisements

Tesla about Edison

“His method was inefficient in the extreme, for an immense ground had to be covered to get anything at all unless blind chance intervened and, at first, I was almost a sorry witness of his doings, knowing that just a little theory and calculation would have saved him 90 percent of the labor. But he had a veritable contempt for book learning and mathematical knowledge, trusting himself entirely to his inventor’s instinct and practical American sense. ”

Biographinq (2008). Thomas Edison: Life of an Electrifying Man. Filiquarian Publishing, LLC. p. 23. ISBN 978-1-59986-216-3.

See also: https://en.wikipedia.org/wiki/Nikola_Tesla#Relationships

The experience of mathematical beauty and its neural correlates

See the full article at https://doi.org/10.3389/fnhum.2014.00068

Original Research ARTICLE

Front. Hum. Neurosci., 13 February 2014 |

The experience of mathematical beauty and its neural correlates

newprofile_default_profileimage_new.jpgSemir Zeki1*, newprofile_default_profileimage_new.jpgJohn Paul Romaya1, newprofile_default_profileimage_new.jpgDionigi M. T. Benincasa2 and Thumb_24.jpgMichael F. Atiyah3

  • 1Wellcome Laboratory of Neurobiology, University College London, London, UK
  • 2Department of Physics, Imperial College London, London, UK
  • 3School of Mathematics, University of Edinburgh, Edinburgh, UK

Many have written of the experience of mathematical beauty as being comparable to that derived from the greatest art. This makes it interesting to learn whether the experience of beauty derived from such a highly intellectual and abstract source as mathematics correlates with activity in the same part of the emotional brain as that derived from more sensory, perceptually based, sources. To determine this, we used functional magnetic resonance imaging (fMRI) to image the activity in the brains of 15 mathematicians when they viewed mathematical formulae which they had individually rated as beautiful, indifferent or ugly. Results showed that the experience of mathematical beauty correlates parametrically with activity in the same part of the emotional brain, namely field A1 of the medial orbito-frontal cortex (mOFC), as the experience of beauty derived from other sources.

Introduction

“Mathematics, rightly viewed, possesses not only truth, but supreme beauty”

Bertrand Russell, Mysticism and Logic (1919).

The beauty of mathematical formulations lies in abstracting, in simple equations, truths that have universal validity. Many—among them the mathematicians Bertrand Russell (1919) and Hermann Weyl (Dyson, 1956; Atiyah, 2002), the physicist Paul Dirac (1939) and the art critic Clive Bell (1914)—have written of the importance of beauty in mathematical formulations and have compared the experience of mathematical beauty to that derived from the greatest art (Atiyah, 1973). Their descriptions suggest that the experience of mathematical beauty has much in common with that derived from other sources, even though mathematical beauty has a much deeper intellectual source than visual or musical beauty, which are more “sensible” and perceptually based. Past brain imaging studies exploring the neurobiology of beauty have shown that the experience of visual (Kawabata and Zeki, 2004), musical (Blood et al., 1999; Ishizu and Zeki, 2011), and moral (Tsukiura and Cabeza, 2011) beauty all correlate with activity in a specific part of the emotional brain, field A1 of the medial orbito-frontal cortex, which probably includes segments of Brodmann Areas (BA) 10, 12 and 32 (see Ishizu and Zeki, 2011 for a review). Our hypothesis in this study was that the experience of beauty derived from so abstract an intellectual source as mathematics will correlate with activity in the same part of the emotional brain as that of beauty derived from other sources.

Plato (1929) thought that “nothing without understanding would ever be more beauteous than with understanding,” making mathematical beauty, for him, the highest form of beauty. The premium thus placed on the faculty of understanding when experiencing beauty creates both a problem and an opportunity for studying the neurobiology of beauty. Unlike our previous studies of the neurobiology of musical or visual beauty, in which participating subjects were neither experts nor trained in these domains, in the present study we had, of necessity, to recruit subjects with a fairly advanced knowledge of mathematics and a comprehension of the formulae that they viewed and rated. It is relatively easy to separate out the faculty of understanding from the experience of beauty in mathematics, but much more difficult to do so for the experience of visual or musical beauty; hence a study of the neurobiology of mathematical beauty carried with it the promise of addressing a broader issue with implications for future studies of the neurobiology of beauty, namely the extent to which the experience of beauty is bound to that of “understanding.”

See the full article at https://doi.org/10.3389/fnhum.2014.00068